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Abstract

Background

An unprecedented Zika virus epidemic occurred in the Americas during 2015-2016. The

size of the epidemic in conjunction with newly recognized health risks associated with the

virus attracted significant attention across the research community. Our study complements

several recent studies which have mapped epidemiological elements of Zika, by introducing

a newly proposed methodology to simultaneously estimate the contribution of various risk

factors for geographic spread resulting in local transmission and to compute the risk of

spread (or re-introductions) between each pair of regions. The focus of our analysis is on

the Americas, where the set of regions includes all countries, overseas territories, and the

states of the US.

Methodology/Principal findings

We present a novel application of the Generalized Inverse Infection Model (GIIM). The GIIM

model uses real observations from the outbreak and seeks to estimate the risk factors driv-

ing transmission. The observations are derived from the dates of reported local transmission

of Zika virus in each region, the network structure is defined by the passenger air travel

movements between all pairs of regions, and the risk factors considered include regional

socioeconomic factors, vector habitat suitability, travel volumes, and epidemiological data.

The GIIM relies on a multi-agent based optimization method to estimate the parameters,

and utilizes a data driven stochastic-dynamic epidemic model for evaluation. As expected,

we found that mosquito abundance, incidence rate at the origin region, and human popula-

tion density are risk factors for Zika virus transmission and spread. Surprisingly, air passen-

ger volume was less impactful, and the most significant factor was (a negative relationship

with) the regional gross domestic product (GDP) per capita.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006194 January 18, 2018 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gardner LM, Bóta A, Gangavarapu K,
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Conclusions/Significance

Our model generates country level exportation and importation risk profiles over the course

of the epidemic and provides quantitative estimates for the likelihood of introduced Zika

virus resulting in local transmission, between all origin-destination travel pairs in the Ameri-

cas. Our findings indicate that local vector control, rather than travel restrictions, will be

more effective at reducing the risks of Zika virus transmission and establishment. Moreover,

the inverse relationship between Zika virus transmission and GDP suggests that Zika cases

are more likely to occur in regions where people cannot afford to protect themselves from

mosquitoes. The modeling framework is not specific for Zika virus, and could easily be

employed for other vector-borne pathogens with sufficient epidemiological and entomologi-

cal data.

Author summary

Since May 2015, when Zika was first reported in Brazil, the virus has spread to over 60

countries and territories, and imported cases of Zika have been increasingly reported

worldwide. However, there is still much uncertainty behind the mechanisms which dic-

tated the rapid emergence of the epidemic. This work introduces a novel modeling frame-

work to improve our understanding of the risk factors which contributed to the

geographic spread and local transmission of Zika during the 2015-2016 epidemic in the

Americas. The model is informed by data on regional socioeconomic factors, mosquito

abundance, travel volumes, and epidemiological data. As expected, our results indicate

that increased presence of mosquitoes, human hosts, and viruses increase the risk for mos-

quito-borne virus transmission. Passenger air travel, however, was less impactful, suggest-

ing that travel restrictions will have minimal impact on controlling similar epidemics.

Importantly, we found that a lower regional GDP was the best predictor of Zika virus

transmission, suggesting that Zika is primarily a disease of poverty.

Introduction

Prior to 2015, local cases of Zika virus had only been reported in Africa and Asia, most promi-

nently in the Pacific Islands [1]. Phylogenetic analysis suggest the virus was introduced into

the Americas as early as 2013 [2, 3], but it was not detected in Brazil until May 2015. By this

time, Zika virus had already silently spread throughout most of the Americas [3, 4]. As of

2016, local Zika virus transmission has been established in over 60 countries and territories,

with the number of estimated cases exceeding 750 thousand [5]. Zika virus infection typically

presents with mild flu like symptoms, and in many cases the infection is asymptomatic. How-

ever, the potential harm posed by Zika is now known to be substantially greater since it has

been associated with a rare congenital disease, microcephaly [6–13], and Guillain-Barre syn-

drome [13]. The unprecedented size of the outbreak and links to severe disease prompted the

WHO to declare the current Zika virus outbreak a public health emergency of international

concern [14]. The emergency status lasted until November 2016, at which point Zika virus was

recognized to remain a significant enduring public health challenge [15].

Like dengue and chikungunya, Zika is a vector-borne virus primarily transmitted by

Aedes aegypti [16–22]. Geographic spread of the viruses occurs through global transport

Risk factors behind Zika transmission
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systems, such as passenger air travel, cruises, and maritime freight, where infected travelers

depart affected regions for destinations where competent vector species have established

populations [2, 23–26]. The numbers of recent travel-related Zika cases diagnosed around

the world (e.g., United States, Europe, Australia, New Zealand and China) [27] demonstrates

how these networks facilitate virus emergence in new areas. It is not always clear, however,

what factors are necessary for successful establishment and outbreaks. For example, in many

countries, imported cases did not result in local transmission, while phylogenetic analysis

shows that some regional outbreaks were initiated by multiple Zika virus introductions [3, 4,

24, 28].

The objective of our work is to better understand the risk factors which contributed to

the spread of Zika virus during the 2015-2016 epidemic in the Americas. Our work comple-

ments and builds upon several recent studies investigating the potential spread of Zika into

new regions by utilizing a substantially different framework. Monaghan et. al. [29] overlaid

simulated Ae. aegypti and Ae. albopictus mosquito abundances, travel capacities, and socio-

economic factors to estimate the cities in the United States with the highest expected cases

of travel-imported Zika. In two studies, Bogoch et. al. [30, 31] presented the potential for

Zika virus spread into the rest of the Americas, Africa, and the Asia Pacific region using air

travel and vector abundance risk maps. Nah et. al. [32] used survival analysis and publicly

available epidemiological and air travel data to predict the risk of importation and local

transmission of Zika virus at the country level. Zhang et. al. [33] applied a stochastic epi-

demic model to simulate the spatiotemporal spread of the virus at a global scale, and esti-

mated both the number of Zika infections and microcephaly for several countries in the

Americas. Ogden et. al. [34] demonstrated that risk to travelers in Zika virus affected coun-

tries correlates with estimates of R0 using human case surveillance data. Others have also

estimated R0 to assess transmission risk across a variety of environments [35–37]. We previ-

ously mapped the variations in the geographic risk profile under different assumptions of

vector species capacities for Zika virus transmission [38], and illustrated the geographic

spread of Zika virus to be driven primarily by Ae. aegypti [39]. In collaboration with a large

international research team, we also analyzed sequenced Zika virus genomes, reported

cases, mosquito abundance, and travel patterns to track the spread of the epidemic (i.e.,
genomic epidemiology) [3, 4, 24].

The proposed methodology we present in this paper is what we refer to as the Generalized

Inverse Infection Model (GIIM), initially introduced in [40], and further expanded upon in

[41]. GIIM is a network optimization model originally designed for static environments,

which we extended to a dynamic framework. Here, we define the network structure by the pas-

senger air travel movements between all pairs of regions in the Americas. For each region, we

provide the model data regarding socioeconomic factors, available health infrastructure, vector

habitat suitability, passenger air travel, and reported Zika case numbers. Our model estimates

the relative contribution of each risk factor in the spread and local transmission of Zika virus

using a multi-agent based optimization search method to estimate the parameters of a link risk

function. Specifically, our results provide quantitative time-dependent estimates for the likeli-

hood of Zika virus spreading between regions, resulting in local transmission at the destina-

tion. At a regional level, exportation, and importation risk profiles are also provided. The risk

function parameters are estimated through iterative refinement, the direction of which is

driven by an error function between predicted and observed properties of an infection process,

similar to what we previously implemented for dengue virus [25]. Our results indicate that the

most common transmission routes were to countries with some of the lowest gross domestic

product (GDP) per capita in the Western Hemisphere [42].

Risk factors behind Zika transmission
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Data

The proposed model is evaluated at a country level, and therefore dependent on country level

data for input. The socioeconomic data, epidemiological data, travel data, and vector suitability

data for the principle spreading vectors species are all aggregated to the country level for all

countries and territories in the Americas as well as the individual U.S. States. Each variable

considered in the model is described in further detail below. All data that we can make publicly

available are listed in S1 Data.

Epidemiological data. We collected the weekly suspected and confirmed Zika cases from

each each country and territory in the Americas from the Pan American Health Organization

(PAHO) [43], as we previously described [24] (data available: github.com/andersen-lab/Zika-

cases-PAHO). Here, we aggregated case to the monthly level for use in our model (Fig 1). The

monthly country level case counts were divided by each country population to compute inci-

dence rates for use in the analysis. We chose to use incidence rates (Fig 1B) rather than case

counts in the model, as incidence rates more accurately capture the likelihood of an individual

traveler being infected.

Although the first Zika cases were reported in Brazil in May 2015, no case data is available

for all of 2015 from PAHO because Zika cases and associated neurological and congenital syn-

drome were not made notifiable conditions by the Brazil Ministry of Health until 17 February

of 2016 [43]. Given the lack of case data yet confirmed circulation of Zika in Brazil, we esti-

mated the number of reported cases from July to December 2015 to increase proportionally to

the monthly suitability during that time period, and calculated the values as a function of the

reported January 2016 case counts. This approach was selected based on the positive correla-

tion between Ae. aegypti abundance and reported case counts in Brazil [2].

Travel data. The network upon which the model is implemented is built using passenger

air travel data from the International Air Transport Association (IATA), which included ori-

gin, destination and stopover airports for all routes, as well as the calibrated passenger travel

volumes for each route in the world at a monthly timescale, and represented in Fig 2. The raw

airport level data is aggregated to a regional network for the purposes of this study, which

includes individual U.S. states, countries, and overseas territories in the Americas. The U.S.

states were modeled individually due to the large heterogeneity amongst them, mainly regard-

ing travel patterns, environmental conditions and reported Zika cases. The route-specific pas-

senger travel volumes supplied by IATA were calibrated based on data from 240 airlines

comprising 84% of global air traffic, and includes over 3400 airports. The passenger volumes

were available at a monthly temporal resolution, which match the temporal resolution of the

model. The transportation data used in this paper were limited to air passenger travel volumes

and did not include cargo flights. For this study, we only used routes originating in regions

with reported Zika virus transmission. We also did not include arrivals into Brazil because we

were investigating the risk factors associated with Zika virus spread starting from this region.

The analysis was done using flight paths and travel volumes for all routes in 2015. These were

the most recent data available for this annual period at the time of analysis, and previously

used in [39].

Mosquito suitability models. The risk for local Zika virus transmission depends funda-

mentally on the presence of vector mosquito species, which is a function of environmental

suitability. A quantitative relative measure of suitability defines the relative ecological risk for

mosquito-borne transmission [44–46]. If the ecological risk is low, local transmission of Zika

virus is highly unlikely. If the risk is high, then other factors, such as the the size of the founder

vector population and the availability of hosts, become critical for local outbreaks.

Risk factors behind Zika transmission
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This analysis is partially based on habitat suitability for the principal Zika virus vector spe-

cies, Ae. aegypti. The monthly vector suitability data sets are based on the original high resolu-

tion maps that we previously developed [47] and used elsewhere [3]. We extended our

estimates to account for seasonal variation in the geographical distribution of Ae. aegypti by

using monthly time-varying covariate data including temperature persistence, relative humid-

ity, and precipitation, as well as static covariates such as urban versus rural land use. The newly

computed monthly suitability values were rescaled so that the sum of all monthly maps

equaled the annual mean. Maps were produced at a 5-km × 5-km resolution for each calendar

month and then aggregated to the level of the U.S. states and countries and territories used in

this study. These expectations define the relative ecological risk for Zika virus transmission in

each cell. Both the mean and standard deviation of the monthly suitability are considered in

this study. Fig 3 illustrates an example of the annual fluctuation in suitability by month for

four of the countries most impacted by Zika. The effect of seasonality is evident for all coun-

tries by the peaks in summer and troughs in winter; the line for Brazil is shifted, due to the dif-

ference in seasonality in the southern hemisphere. The figure also illustrates the geographical

distribution of mean relative Ae. aegypti suitability during periods of Zika virus transmission

in the Southern and Northern Hemispheres (Fig 1B, January and August, respectively).

The level of spatial aggregation in the model requires the use of the an average regional suit-

ability value. For some large regions with high variability in environmental conditions and

landscape, a mean value is not necessarily appropriate. For this reason we explored the inclu-

sion of the standard deviation of suitability for each region as an additional attribute to capture

Fig 1. Reported suspected and confirmed Zika cases in the Americas. Monthly distribution of reported (A) Zika cases and (B) Zika incidence rates for 15 countries

and territories during the 2015-2016 epidemic (listed in descending order of incidence rates). (C) The number of countries and territories reporting local Zika cases

per month. (D) The total number of Zika cases reported in the Americas per month and cumulatively during the epidemic.

https://doi.org/10.1371/journal.pntd.0006194.g001
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Fig 2. International air passenger travel used to construct the Zika virus epidemic model network. Passenger air travel from regions

that reported Zika virus transmission was used to construct a network for potential international virus spread from the epidemic origin,

Brazil (pink). The monthly travel volumes were normalized to fit between 0 and 1 and summed across the 18 month study period. The

color gradient represents the relative arrival volumes at each destination. The weighted lines represent the travel volumes along each

route with the thicker end pointing towards the destination. The travel routes connect region centroids, not specific air ports. We only

Risk factors behind Zika transmission
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the existence of high suitability “hot spots”, and thus, still pose a potential risk for transmission

even when overall suitability is relative low. However, the variable was excluded in the final

analysis because of its poor performance, likely due to the low variability of suitability in many

of the smaller Caribbean Islands, where Zika virus was quite prevalent.

used departing flights from Brazil (pink). The maps were generated using open source shape files from Natural Earth (http://www.

naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0006194.g002

Fig 3. Seasonal and geographical dynamics of Aedes aegypti suitability. (A) Monthly mean and standard deviation of relative Ae.
aegypti suitability for four prominent countries with known local Zika virus transmission. (B) Geographical distribution of mean

relative Ae. aegypti suitability during periods of Zika virus transmission in the Southern and Northern Hemispheres (January and

August, respectively). The maps were generated using open source shape files from Natural Earth (http://www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0006194.g003
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Socioeconomic and human population data. A country’s ability to implement a success-

ful surveillance and vector control programs are critical components to preventing and/or

managing an outbreak (if introduced). There is no globally available data to quantify vector

control at the country level, therefore alternative economic status and health related indicators

were chosen to act as a proxy for available control resources. Economic development is mea-

sured by the GDP converted to international dollars using purchasing power parity rates and

divided by total population (GDP PPP per capita). GDP data was collected from Worldbank

[42] and the U.S. Bureau of Economic Analysis [48], and illustrated in Fig 4. The two variables

selected to represent the availability of health infrastructure are: 1) the number of hospital beds

and 2) the number of physicians per 10,000 people. Health indicators for the U.S. were col-

lected from the Centers of Disease Control and Prevention (CDC) [49], and data for most

regions in the Americas was collected from the WHO World Health Statistics report [50] and

from the PAHO [51].

Human population densities (people per sq. km of land area) for each region were collected

from Worldbank [52] and the U.S. Bureau of Economic Analysis [48] (Fig 4B).

Maps presenting geographical data. The maps presented in our figures were generated

using open source shape files from Natural Earth (http://www.naturalearthdata.com/), and

rendered using Matplotlib [53]. The software and basemaps are open source and freely avail-

able to anyone.

Method

For the purpose of estimating the risk of Zika virus spread and local transmission in the Amer-

icas, we expand upon a previously developed method based on the GIIM [40, 41]. The GIIM

model is referred to as an inverse infection model because, instead of attempting to simulate

an infection process directly, it uses observations from an actual outbreak on a network and

seeks to estimate the parameters of this process, e.g., transmission probability functions on the

links of the network. This objective is complementary to a related problem which seeks to

infer the set of links most likely responsible for explaining an observed transmission process

[54–56]. To accomplish the prescribed task, GIIM relies on information such as the status of

confirmed local transmission for each node (or a subest of nodes) in the network, as well as the

structure and properties of the network itself. The transmission status is used as a reference

point, and GIIM sets the edge weights such that the underlying stochastic simulation model

replicates the actual outbreak scale as closely as possible, i.e., GIIM seeks to minimize the error

between the observed and reference point. The GIIM model was originally designed for static

environments, and is extended to handle dynamic inputs of the application proposed in this

work. Both the original model and the extensions are discussed in detail in this section.

Model inputs

The inputs for the GIIM consist of the underlying network structure, attributes of both the

nodes and links of the network, and observations on the actual transmission process. In this

work the network structure is defined by the passenger air travel movements between regions

in the Americas. We denote graph G as G(V, E), where VG is a set containing all the vertices of

the graph, while EG contains all the edges of the graph. Edges are denoted as eu,v, where u is the

source and v is the destination of a travel route represented by the edge. In this paper, VG con-

tains all countries in the Americas, the French, Dutch, British and American overseas territo-

ries, and the individual states of the US, which also defines the spatial resolution of the model.

The temporal resolution of the model implemented in this work is at a monthly level, which

corresponds to the available travel and suitability data. The edges of the graph exists between a

Risk factors behind Zika transmission
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Fig 4. Regional variability in socioeconomic and human population data in the Americas. Regional values for (A) gross domestic product (GDP) purchasing

power parity rates per capita and (B) human population densities (people per sq. km of land area) used in the models. The boxes show zoomed in views of the

Caribbean Islands. The maps were generated using open source shape files from Natural Earth (http://www.naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0006194.g004
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pair of regions if there were passenger air travel movements between them during any month

in 2015. The travel patterns between countries is asymmetric, therefore the resulting graph is

directed. We denote this graph as GA.

We assign a number of attributes to the vertices and edges of the graph to capture the

potential risk factors that may influence the regional spread of Zika virus over time. These

attributes correspond to the variables described in the data section. The attributes take the

form of normalized real values between zero and one, and include the following:

1. Vt
uv denotes the normalized monthly passenger air travel volume between regions u and v,

where u is the origin and v is the destination, and t is the month.

2. It
u denotes the Zika incidence rates computed from (suspected and confirmed) cases

reported at each month t in the origin region u, and the population at the origin.

3. St
v denotes the average monthly suitability value for Ae. aegypti at the destination v, for

month t.

4. SVt
v denotes the standard deviation (STD) of monthly suitability value for Ae. aegypti at the

destination v, for month t.

5. Ev denotes the normalized GDP on purchasing power parity (GDP PPP) at the destination

v.

6. Hv denotes the normalized health indicator at the destination region v.

7. Pv denotes the population density of the destination region v.

A subset of the attributes are dynamic, i.e. their value changes over time, and therefore are

denoted with an additional time index, t. The dynamic attributes include the passenger vol-

umes, the incidence rates in each region, and the vector suitability. The monthly airport travel

volumes, Vt
uv, are aggregated to the state and country level. The mean and standard deviation

of the vector suitability for each region for each month is computed as described in the data

section. The remaining attributes are static, and are assumed not to vary over the course of the

year.

The GIIM defines a transmission model on the input graph. Graph-based transmission

models require a real value wt
e 2 ½0; 1�; e 2 EGA

to be present on all edges of the graph, these are

called edge transmission probabilities. In this application of the GIIM, the attributes are incor-

porated into a functional form to represent each time-dependent edge transmission probabil-

ity. The function takes the form as shown below:

wt
e ¼ C þ aVt

uv þ bIt
u þ gSt

v þ dSVt
v þ oEv þ rHv þ lPv ð1Þ

The variables in the function correspond to the set of attributes previously listed, and the

coefficients of each attribute are the parameters to be estimated by the model. Values wt
e are

bounded between 0 and 1. We will denote the surjective assignment of edge transmission

probabilities to the edges as WGA
: EGA
7!½0; 1�.

In addition to the network attributes, GIIM requires a reference observation of the real-life

transmission process it seeks to estimate. In the current application, the observation used is

the date of the first reported local Zika cases in each region for the time period considered.

The reference point is therefore given as a set of 18 binary vectors; each binary vector corre-

sponds to a month of the observed Zika virus outbreak starting from July 2015 to December

2016, and assigns a value of 0 or 1 to each node of the graph indicating its transmission state. A

value of 1 indicates that the presence of local transmission of Zika virus in the region was

Risk factors behind Zika transmission
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reported within or before the corresponding month, and a value 0 indicates that Zika cases

have yet to be reported from the region.

Stochastic simulation model

The GIIM relies on an underlying stochastic simulation to model the spreading process. The

compartmental model that is used in this paper is the SI model, which has two states: suscepti-

ble (S) and infected (I). The graph-based SI infection model is an iterative discrete-time model

that assigns states to the nodes of the graph: each node can only be in a single state at any time

step, and all nodes must have a state at all times. While GIIM can accommodate a more com-

plex compartmental model, e.g., SEIR, the SI model is selected to fit the Zika virus application

based on the assumption that once Zika virus becomes locally established, that region remains

a potential risk of furthering the spread of the virus for the time frame being considered. The

reason for allowing the option of non-zero outgoing risk after the reported case count reduced

to zero is that there could still be infected individuals in the region, especially given the high

rate of asymptomatic cases and reporting error. However, it is important to note that the use

of the SI model does not enforce a region to have a positive transmission probability over the

entire period modeled, it simply allows a non-zero transmission risk value to be estimated by

the model. The actual time-dependent transmission probability is defined as a function of the

incidence rate at the origin country among other factors; a probability of zero is a feasible solu-

tion of the model, and is actually assigned to many of the links over the course of the outbreak.

Given the estimated transmission probabilities, in each step of the simulation, “infected”

nodes try to “infect” all their susceptible neighbors according to the transmission probability

we connecting them. If the attempt is successful, the neighbor will be infected in the following

iterations. If the attempt is unsuccessful, the neighbor remains in a susceptible state, and the

infected node can continue to make attempts in the following iterations indefinitely.

More formally, the transmission process starts from an initially infected set of nodes

A0 � VGA
at iteration t0. The rest of the nodes VGA

n A0 are susceptible at the beginning of the

process. Let Ai � VGA
be the set of infected nodes at iteration i. At each iteration, t, each node

u 2 Ai tries to infect each susceptible neighbor v 2 VGA
n Ai according to the probability

wi
e; e ¼ ðu; vÞ 2 EG. If the attempt is successful, v becomes infected starting from the following

iteration: v 2 Ai+1. If more than one node is trying to infect v in the same iteration, the attempts

are made independently of each other in an arbitrary order within the same iteration. By defi-

nition, the transmission process stops at iteration t if At ¼ VGA
. Since we only simulate a finite

portion of the Zika virus epidemic, we stop all transmission models after 18 iterations, corre-

sponding to the observed months of the epidemic at the time of analysis.

Within each model run, the transmission process is repeated 10000 times to produce a real

value indicating the likelihood of each node being in an infectious states at each iteration, t.
The value is calculated by counting the number of repetitions when nodes were in an infec-

tious state, and dividing by the total number of repetitions i. e.10000.

Generalized inverse infection model solution methodology

The GIIM [41] implemented in this work formulates the estimation of edge transmission

probabilities as a general optimization task. The model relies on knowledge of the underlying

graph and (at least a subset of) observations from a transmission process taking place on the

network. The real observations take the form~ot 2 O, where~o is a binary vector and t is a time

stamp. Each vector represents a point in time and~ot assigns a binary value to all v 2 VGA
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indicating the observed transmission (or lack there of) of Zika virus in the region at time t. Set

O contains all observations, while set T contains all sample times, i.e. |O| = |T| = 18.

The inputs of GIIM are: an unweighted graph G, a transmission model I , the set of sample

times T, and the set of observations O, where O ¼ Inf ðG;W; I ;TÞ. In this work I is the SI sto-

chastic simulation transmission model defined in the previous subsection, WG: EG 7! [0, 1]

is the unknown weight assignment, and Inf is a procedure that generates observations at sam-

ple times T based on transmission process I taking place on graph G with assigned edge

weights we 2W, e 2 E(G). The set of observations, O0, is a time-dependent vector of real

values equal to the probability each node is infected at each timestep, computed from the set of

runs. The task of GIIM is to find an estimation W0 of W so that the difference between O and

O0 ¼ Inf ðG;W 0; I ;TÞ is minimal. Due to the need to compare a set of binary vectors with a

set of real vectors, we compare observations O and O0 using ROC evaluation by pairwise com-

paring vectors~oi 2 O and ~o0 i 2 O0 for i = 1. . .18, computing the AUC value for each pair and

averaging over all pairs.

The formal definition of the GIIM is as follows:

General Inverse Infection Model: Given an unweighted graph G, and transmission model I ,

the set of sample times T and observations O ¼ Inf ðG;W; I ;TÞ, we seek the edge transmission
probability assignment W0 such that the difference between O and O0 ¼ Inf ðG;W 0; I ;TÞ is
minimal.

The GIIM defines the estimation of W as an optimization problem, which is solved using

an iterative refinement algorithm. The procedure begins with an initial weight configuration

W 0
0
, runs transmission model I , makes observations O0 and computes the error between O

and O0. Based on the error, W0 is refined and the process is repeated, until the error becomes

less than an accuracy constant a selected by the user. The search strategy used in this paper is

the Particle Swarm Optimization (PSO) method [57]. According to the findings in [41], the

method is stable and is able to produce outputs close to the reference, and therefore the solu-

tion method chosen for this work as well. It can also be implemented in a parallel environment

speeding up computations considerably. Algorithm 1 summarizes the iterative GIIM

algorithm.

Algorithm 1 Generalized Inverse Infection Model
1: Inputs: G, I, T, O, a
2: Choose initial edge infection probability assignment W 0

3: repeat
4: Compute O0 ¼ Inf ðG;W 0; I ;TÞ
5: Compute dðO; O0Þ
6: if dðO; O0Þ � a then
7: return W 0

8: else
9: Choose new W 0 according to the PSO search strategy.
10: end if

Dynamic extension of general inverse infection model

A major modification was necessary in order to adapt the GIIM method to be applied in the

context proposed here. The original GIIM method estimates the edge transmission values of

the graph directly as real values that are static, i.e., they do not change over time [41]. In this

work the edge weights are given as functions of known attributes on the nodes and edges of

the graph, and the task becomes the estimation of these functions, or more specifically, the

coefficients of these functions. Several attributes in this application are dynamic, i.e., they

change with time. Thus, it is necessary to further extend the function estimation method to
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account for dynamic attributes, and to adapt the simulation model to handle dynamic edge

transmission values.

In this work the edge transmission values are defined using a linear function of known attri-

butes, as defined in eq (1). More generally, if at
iðeÞ; e 2 EGA

is the set of attributes, where i rep-

resents the i-th attribute and t represents the time period, then the time-dependent edge

transmission probabilities wt
e are given as wt

e ¼ gðf1ðat
1
ðeÞ; ~c1Þ; f2ðat

2
ðeÞ; ~c2Þ; . . . ; f‘ðat

‘
ðeÞ; ~c‘Þ; ~cg Þ

for all e 2 EGA
, where ℓ is the number of available attributes, f1, . . ., fℓ and g are functions and

~c1 ; . . . ; ~c‘; ~cg are coefficients of functions f1, . . ., fℓ, g. Following the notation proposed in [41],

the functions used to compute the edge transmission probabilities are given as a set of attribute

functions f1, . . ., fℓ assigned to each invididual attribute, an aggregator function g with the role

of creating a single value from the result of the attribute functions and a normalization func-

tion ensuring that the result falls between 0 and 1. This formulation makes implementation of

the method easy while retaining the flexibility of the model. Let C denote the set of all coeffi-

cient vectors. The values of the attributes can change over time, however the functional form

and estimated coefficients are assumed to remain constant over the time period examined.

The optimization process of GIIM changes from the estimation of the direct weight assign-

ment W to the estimation of C. This provides a means to identify the key factors contributing

to the spread of Zika virus throughout the regions in the Americas. A second advantage is tech-

nical; |C|<< |W|, therefore the optimization process is much easier because we are only look-

ing for a limited number of function coefficients as opposed to the edge transmission

probabilities for all edges of the graph. For the implementation of the model in this paper, all

parameters are bounded between -0.5 and 0.5, in order to reduce the solution space for the

PSO method. Finally, the resulting edge transmission values are trimmed above 1 and below

zero by taking wt
e ¼ MAXð0;MINð1;

P‘

i¼1
f ðat

iðeÞ; ciÞ þ cgÞÞÞ.

Results and discussion

By the time Zika virus was first detected in Brazil in May, 2015, the virus had already rapidly

spread to most regions of the Americas [3, 4]. The goals of our analyses were 1) to identify the

relative contribution of each risk factor in the spread and local outbreaks of Zika virus and 2)

to compute the risk of spread (or re-introductions) between each pair of regions during 2016.

We aggregated the route level risks to provide a relative ranking of total importation and

exportation risk posed by and to each region per month during the outbreak. Our final net-

work, representing feasible air travel routes in the Americas, is a directed, weighted graph

structure with 103 nodes and 2946 edges.

Estimated contribution of risk factors

The first task of our study is to identify the set of attributes (and corresponding contribution

of each) to be included in the model. We consider the entire set of attributes previously pre-

sented in the data section. A linear weighted sum function as defined in eq (1) is used to com-

pute transmission probabilities, and the dynamic GIIM method is implemented to estimate

the coefficients of the function. Different variable configurations were considered, and the

model that produced the best fit was selected. The model fit is based on the quantifiable perfor-

mance metric, ROC AUC averaged over the entire time period. To evaluate and ensure stabil-

ity of the proposed estimation method, we ran the algorithm 20 times with the same set of

inputs and computed the mean and variance of the estimated model coefficients over all runs.
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The results of the final model are presented in Fig 5.

wt
e ¼ 0:040þ 0:079Vt

uv þ 0:247It
u þ 0:174St

v � 0:372Ev þ 0:285Pv ð2Þ

The results of the model are highly robust. The estimated coefficients vary minimally across

runs, and, more significantly, the ranking of all risk factors remained consistent across all runs

(Fig 5A). The expected value of the estimated coefficients represent the relative influence of

each attribute in the risk of Zika virus spread between a pair of regions. When interpreting

these coefficients it is important to first note that this model is designed to estimate the risk of

Zika virus spread between two regions resulting in local, vector-borne transmission. This is dif-

ferent from the risk of Zika infected passenger arrivals. For example, there are multiple loca-

tions where travel cases of Zika were continually reported, yet no local cases resulted [27]. The

Fig 5. Estimated risk factors for Zika virus transmission and spread. (A) The mean and standard deviation of the

model coefficients estimated across 20 runs. The estimated coefficients represent the relative contributions of each risk

factor. (B) The model performance mean and standard deviation values for each month of the observations period.

https://doi.org/10.1371/journal.pntd.0006194.g005
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lack of local transmission in these examples could be due to many explanations, including

insufficient populations of competent vectors and/or intense surveillance and vector control

programs implemented at the destination. Thus, a high number of travel-reported cases does

not necessarily translate to a high local transmission risk, and for this reason, the risk of Zika

infected passenger arrivals and local transmission risk should be modeled separately. Due to

the potential harm posed by local outbreaks of Zika, local transmission risk is the primary

focus our analyses.

The important distinction between modeling travel-reported cases and local transmission

risk is perhaps most evident from the low coefficient estimated for travel volume. In fact, we

found infected travelers to be significantly less influential than all the other risk factors. This

can be explained by the fact that there is a high level of connectivity between most pairs of

regions, and more importantly, the highest volume of air travel exists between and within the

U.S. states. Yet, with the exception of Florida [24] and Texas [58], Zika was not broadly estab-

lished in the U.S. Thus, we do not identify travel volume to be a driving forces in the spread

and transmission of Zika virus in the Americas; travel is a necessary, but not sufficient condi-

tion. It is worth noting that a model seeking to estimate the risk of infected passenger arrivals

alone would likely find this variable to play much more substantial roles.

In contrast, we found that Zika virus spread and local transmission is largely driven by

regional attributes at the origin (incidence rate) and destination: Ae. aegypti suitability, human

population density, and the GDP, with GDP being the most significant (Fig 5A). As expected,

a higher incidence rate at the travel origin, which can act as a proxy for the likelihood of an

infected individual arriving at the destination, significantly increases the risk posed to the

travel destination. Similarly, the results indicate a higher vector suitability at the destination

corresponds to an increased risk of transmission. High human population density at the desti-

nation is also revealed to increase the risk of transmission, consistent with the required pres-

ence of both vectors and hosts for mosquito-borne virus transmission. The health indicator

variables were excluded from the final model, as they were not found to have a significant

impact.

Based on our model results, the most dominant and only negative risk factor is a region’s

GDP, i.e., a higher GDP at the destination corresponds to a lower risk of transmission. Based

on the magnitude of the coefficient, the destination’s GDP contributes more than any other

risk factor considered. The highly negative coefficient of GDP can be explained by the substan-

tial delay (or complete lack) of local transmission in the wealthier U.S. states and certain terri-

tories and islands in the Caribbean. GDP is obviously not directly involved in Zika virus

transmission, but it may indirectly influence the interactions between components of the

cycle: hosts and vectors. Poorer nations likely have lower housing qualities and inhabitants

may be exposed to more mosquito bites, e.g., a lack of screens on windows and doors allowing

mosquitoes to enter. They may also have more debris around their homes acting as breeding

containers for Ae. aegypti. Lastly, GDP may be a proxy for the available surveillance and

vector control resources at the destination, an increase of which would aid in reducing local

transmission.

Our final model captures the relative contribution of both static and dynamic risk factors to

explain the spread and local transmission of Zika virus in the Americas. The AUC ROC for

this model averaged over the 18 months is 0.923, which indicates an excellent fit (Fig 5B). For

the first month we see perfect classification, since the epidemic was only reported in Brazil,

which proves trivial for the estimation method. The second half of 2015 corresponds to a

major increase in the number of regions reporting local transmission (as illustrated in Fig 1).

Specifically, between November and December the number of regions reporting transmission

nearly doubled from 9 to 16, and then increased to 32 in January. This proved to be the most
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challenging part of the estimation process, and the reason for the performance drop below 0.9

during the period from October to January. The minimum AUC value of 0.83 occurred in

November 2015, which is still considered to be good performance for any classifier. The esti-

mation task gets easier again for the last 9 month characterized by a low but constant rate of

spreading between the regions, and performance goes around 0.95 again for these months. We

can conclude, that even though sudden bursts in the reported local outbreaks decrease predic-

tion accuracy slightly, the method is able to provide accurate estimation. The estimation pro-

cess took between 3 to 4 hours with the number of iterations between 250 and 350. A parallel

version of the algorithm was implemented in C++, and the results were computed on a PC

with an 4-core i7-7700k 4,2 GHz processor.

Route level risk

Using the final estimated model, we computed the probability of Zika virus spread between

any pair of regions in the Americas resulting in subsequent local transmission (Fig 6). The link

probabilities reveal the highest risk travel routes connecting regions at discrete points in time

over the outbreak, as well as how the relative ranking changes over time (Fig 6A). Out of the

2946 feasible edges in the network, only 711 edges have nonzero transmission probabilities,

and only 58 of the edges has a value greater than 5% at any point of the observation period.

The time-dependent data for the top 100 transmission links, exportation risk, and importation

risk are provided in S1 Data.

In general, the high risk travel routes are dominated by ones outbound from the Caribbean

Islands with the highest incidence rates (earlier in the outbreak), and pointing to the less devel-

oped countries and territories of the Caribbean and Central America. These results are corrob-

orated by the early estimated introduction times into countries like Haiti and Honduras

relative to Puerto Rico, Mexico, and the U.S. [3, 4, 24], see also www.nextstrain.org/zika. The

risk on routes departing a given country, e.g., Brazil, behave similarly, but vary in magnitude.

They also display different behavior than the outgoing risk posed by other high risk countries,

e.g., Martinique. The estimated transmission probabilities fluctuate over time due to changes

in the dynamic attributes at both the route origins (outbreak scale) and destination (vector

suitability), as well as variations in the monthly travel volumes between regions. The effect of

these risk factors, for example, the lower Zika incidence rates in Puerto Rico relative to Marti-

nique (Fig 1B), is illustrated by the corresponding temporal differences in transmission risk

into Haiti (Fig 6A).

The route level risk can be aggregated to provide import and export risk profiles at a

regional level. This type of spatial and time-dependent information can help guide policy deci-

sions, such as where to allocate available resources at different stages during an outbreak. The

regional level risk is achieved by computing the node strength statistic for all nodes of the net-

work. Node strength is defined as the sum of all weights incident to a node. In the case of a

directed network, out-strength, i.e., the sum of all outgoing link weights, and in-strength, i.e.,
the sum of all incoming link weights, are calculated to provide the relative export and import

risks. Node strength values can be used to rank the regions according to outgoing (export, Fig

6B) and incoming risk (import, Fig 6C and 6D), and more critically, observe how the ranking

and magnitudes of the risk change over the course of the outbreak.

Regional exportation risk

To determine the regions most likely to contribute to the spread of Zika virus during the epi-

demic, we estimated the the dynamic exportation risk using the route-level network (Fig 6B).

Martinique, Brazil, Colombia, Puerto Rico and Mexico are identified by the model to pose the
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Fig 6. Temporal and regional risks for Zika virus introductions and transmission. (A) The temporal probabilities

for Zika virus introductions via infected travelers and establishment of local transmssion are shown for 10 links, listed

as origin-destination (rank). Relative risk profiles for temporal and regional Zika virus (B) exportations and (C)

introductions were estimated using the network-level transmission probabilities (top 5 ranked regions shown for

each). (D) Geographic variation in relative Zika virus importation risk for June, 2016. All Zika virus transmission data

can be found in S1 Data. The maps were generated using open source shape files from Natural Earth (http://www.

naturalearthdata.com/).

https://doi.org/10.1371/journal.pntd.0006194.g006
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highest risk of spreading Zika to new regions. Intuitively, the export risk is dominated by the

set of counties infected earlier in the outbreak and those with high incidence rates. Martinique

stands out as having the highest exportation risk, which peaks during March, corresponding to

the month with the highest incidence rate (Fig 1B). The highest exportation risk through 2015

is posed by Brazil and Colombia, which were the two countries reporting early and large out-

breaks (Fig 1A). Brazil was identified as the likely source of spread to the first few Caribbean

Islands, which is consistent with the phylogenetic data [3, 4]. Our model estimates that Brazil

and Colombia became less prominent in their roles of seeding new Zika virus outbreaks from

December, 2015, to May, 2016. This time period corresponds to the significant rise in the

number of new regions reporting local Zika virus transmission (Fig 1C) and the rise of Zika

incidence rates in many Caribbean Islands (Fig 1B). The increased exportation risk posed by

Martinique during this time captures this behavior (Fig 6B).

Regional importation risk

We similarly aggregated the route-level network at each destination to determine temporal

and regional importation risk (Fig 6C and 6D). The regions at highest risk of local transmis-

sion are dominated by the less developed countries and territories in Central America such as

Belize, and the islands in the Caribbean, such as Haiti, Saint Lucia, Grenada, and Dominica.

The high ranking of these regions is due to their low GDP (Fig 4A), high human population

density (Fig 4B), and high vector suitability (Fig 3).

For the U.S., the states with the highest importation risks were Florida, Georgia, and South

Carolina, mostly due to their high Ae. aegypti suitability (Fig 3) and incoming travel volume

from the affected regions [24]. Compared to much of the Americas, however, these importa-

tion risks were low, predominantly due to their high GDP (Fig 4A). In fact, Florida was the

only one of those three states (along with Texas) that reported local Zika virus transmission.

These findings correspond with and reinforce previous route-level risk rankings, that is less

developed regions are more likely to see local Zika virus transmission, given they meet the

basic requirements for Ae. aegypti-borne virus transmission.

Sensitivity to case reporting errors

Much of the dynamic aspects of our network model are based upon reported Zika virus cases,

which are likely biased and vastly underestimated. Moreover, there is often a substantial delay

(3-12 months) between actual introduction of the virus and the first reported case [2–4, 24].

The reporting inaccuracies can be attributed to the high percentage of asymptomatic Zika

cases and insufficient surveillance methods, among other factors. While we cannot feasibly

correct for all reporting inaccuracies, we conducted sensitivity analyses to account for delays

in case reporting (Fig 7). Both three- and six-months reporting delays were considered, and

the model was re-run with corresponding shifts in the data to represent each assumption.

While the coefficient rankings slightly changed, likely representing better fits between local

vector suitability and Zika incidence rates, the general conclusions were unchanged—low

GDP was still the best predictor of local Zika virus transmission. Thus, our results appear to be

robust to some reporting inaccuracies.

Limitations

Our work takes a major step towards improving our understanding of the risks associated with

Zika virus spread and local transmission; however, there are certain limitations of this analysis

that must be noted here and addressed in future research:
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1. For consistency, we aggregated all attributes to the same spatial scale, and due to limitations

on available case data, the model was implemented at the state and country level. For some

of the smaller countries and Caribbean islands with only one major city or international air-

port, this was not a major problem. For large countries with substantial heterogeneity

across the region, however, certain aggregated attributes are not necessarily representative.

The mean vector suitability is perhaps the most compromised attribute. The use of the an

average suitability across a large region with high variability in environmental conditions

and landscape is not accurate, and may result in underestimations or overestimations of

potential risks for certain regions included in the model.

2. Reported Zika case data is vastly underreported and subject to substantial variability across

regions. This issue affects two attributes used in this model, the incidence rates and the

dates of the first reported cases. The level of inaccuracy is impossible to quantify. However,

we partially addressed this issue through sensitivity analysis conducted around assumed

reporting delays (Fig 7). Our analysis demonstrates that reporting delays would not likely

alter our general conclusions regarding the risk factors associated with Zika virus spread.

3. Due to the lack of case data for Brazil between May and December 2015, estimated case

counts were used (as described in the data section). These estimated values may result in an

overestimate or underestimate of the actual number of cases during this time period, and

potentially impact the estimated outgoing risk posed by Brazil.

4. At the start of this study, 2015 monthly air travel data was the most recent data available

and was therefore used in place of 2016 data in the analysis. The main discrepancy due to

this substitution is in August, when the 2016 Olympics where held in Rio. The travel pat-

terns into and out of Brazil were likely substantially different in 2016, and would not be rep-

resented by the 2015 data set. Even with 2016 IATA data, however, the actual travel

patterns surrounding the Rio Olympics would not be captured because a large portion of

the trips were made using chartered flights, which are not recorded in the same data set.

Fig 7. Sensitivity analyses accounting for delays in reporting Zika virus transmission. The model was re-run by shifting the

reported Zika virus cases by three and six months for each region to account for delays in outbreak detection.

https://doi.org/10.1371/journal.pntd.0006194.g007
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Furthermore, in August 2016, the number of local cases reported in Brazil dropped substan-

tially (Fig 1A), as did the number of travel reported cases from Brazil during and immedi-

ately succeeding the Olympics.

5. This study accounts for a single mode of inter-regional travel, passenger air trips, and

excludes land and sea travel. Due to these limitations, the results from this analysis likely

underestimate the risk posed to destinations in close spatial proximity to affected regions,

as well as the risk posed to the gulf U.S. states and Caribbean Islands with substantial cruise

ship travel [24]. To accurately capture multi-modal human mobility patterns requires data

from multiple transport sources or data which is not linked to any specific transport mode.

Mobile phone data, as one such option, offers significant potential in modeling and predict-

ing epidemic spread [39].

6. Zika virus could be efficiently spread by mosquito species other than Ae. aegypti, which is

not accounted for in this study. The potential role of Ae. albopictus in transmitting Zika

virus poses additional risk because it has a much wider presence in temperate regions,

including southern regions of the Americas and Australia, as well as the northern United

States and parts of Europe and Canada [38, 47]. However, we recently presented data to

suggest that Ae. aegypti presence alone best explains the geographical distributions of Zika

virus outbreaks in the Americas [39], thus the reason for it being the focus in this work.

7. Finally, this analysis ignores the role of potential non-vector-borne mechanisms of Zika

virus transmission. This includes sexual [59–61] and vertical transmission [8]. While vector

habitat suitability will likely continue to play a predominant role in the spread of Zika virus,

further research is necessary to understand how alternative transmission mechanisms may

impact the local risk profiles.

Conclusions

Our work enhances our understanding of and ability to investigate the risk factors which con-

tributed to the spread and local transmission of Zika virus during the 2015-2016 epidemic in

the Americas. For each region, our model is informed by data on regional socioeconomic fac-

tors, vector habitat suitability, passenger air travel data, and epidemiological data. We con-

structed and implemented a dynamic extension of the GIIM to estimate the contribution of

each risk factor to the likelihood of Zika virus transmission. Our model relies on a multi-agent

based optimization method to estimate the parameters and a data driven stochastic-dynamic

epidemic model for evaluation. The GIIM was shown to perform well based on quantitative

metrics.

Our results from the final model indicate the spread and local transmission of Zika virus

was quite multifaceted. As expected, regional attributes influencing vectors (Ae. aegypti suit-

ability), hosts (human population density), and viruses (Zika incidence rates at origin of travel)

all contributed to the likelihood of establishing local mosquito-borne transmission. Passenger

air travel volume, however, was notably less impactful that the other attributes. Therefore,

rather than travel restrictions, we predict that mosquito control will be more effective at reduc-

ing Zika virus introductions leading to local transmission. This debate recently arose during

the 2016 Rio Summer Olympics where some wanted to ban the games to prevent further Zika

virus spread [62]. Our results suggest that additional travel for the Olympics was highly

unlikely to make a significant impact.

From our model, the coefficient most associated with Zika virus transmission was the

regional GDP per capita, where a lower GDP corresponded to higher transmission risk.
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Although GDP does not directly influence transmission, it likely serves as a proxy for mos-

quito-host interactions [63] and surveillance activities. For example, people living in poverty

often do not have the means to protect themselves from host seeking mosquitoes, such as air

conditioning and screened windows common in higher income areas. Findings by Netto et al.

[64] of higher Zika virus seroprevalence in areas with lower socioeconomic status further sup-

port our association. This, now evidence based conclusion that Zika and other Ae. aegypti-
borne viruses should be considered diseases of poverty, is also consistent with other expert

opinions [37, 65, 66].

The two most significant risk factors identified in our work, namely GDP and population

density, are often excluded in geographic risk profiling of Aedes vector-borne diseases, and

should be considered in future analysis. Our model is not specific for Zika virus and could eas-

ily be employed for other mosquito-borne viruses, such as dengue and chikungunya, with suf-

ficient epidemiological and entomological data. Furthermore, the model could be adapted as a

tool to inform real-time policy decisions regarding resource allocation for destination-based

surveillance and vector control.

Supporting information

S1 Data. The excel file includes the following input data and model results a) Regional popula-

tion density, GDP and monthly reported case data used as input in the model; b) Monthly

Case data for each country; c) The top 100 routes likely to result in local Zika transmission at

the destination and their time-dependent relative risk estimates; d) The complete set of regions

included in the model and their time-dependent relative importation risk; e) The complete set

of regions included in the model and their time-dependent relative exportation risk.

(XLSX)
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